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1. Introduction
This research considers only passive vibration isolation. Most

.A.l,-..--
e P

physical structures designed for dynamic environments have isolator

demd

elements to attenuate the response. Examples of problems that could

P N
. . «
PHPUPY

"L'.

benefit from this research are ground vehicle response and equipment
or instrument vibrational response. These problems use passive isola-
tors to minimize the vibrational response.

As a preliminary stqp toward the study of active structural vibra-

tion, the passive vibration is studied in this research. Most Aerospace
structures of the future will use active vibration isolation to attenuate

-

the response. The active vibration isolation problem would contain the
same constraints used in this study with the addition of control forces
to the state equations and to the objective function - Large space
structures would use active vibration isolation to control the response
of the very flexible structural systems.

The algorithms that are developed in this research are consistent

FYNE TN

T GO TheTe e
il 1.- Ty

with the minimum weight problem which is not considered in the present
study. e

tf This research considers constraints that are displacements, ]
N accelerations and natural frequencies. The design variables are linear "
?T changes to mass, stiffness or damping matrices. The constraints can j%
'! be expressed in either the time or frequency domain and the cumulative r
9 constraint is used to measure the amount of constraint violation. It 21
[ is shown that the variation of the displacememts or accelsration constraints {2
tf are shallow in reciprocal design variables. The objective function f@
[i represents a design variable that restrains displacements or accelerations ’
# to be less than a maximum value. %
;} These algorithms have been studied for transient response, frequency ﬁ:
g response and stationary random. No attempt was made to consider ill E:
:i conditioned vibrational problems that occur between a structure and )
f: isolator elements that are designed to move independent of the structure. o
;
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2. Transient Response

The minimization of displacements or accelerations can be
formulated as a MIN-MAX optimization problem.

- (1) MIN (Max x| )

(2) KY = AMY

(3) MK+ CR+ KX = P

(4) MAX |X, () - X;(8)] <X,
® A Ay

(6) K= Ko +““ZuiKi

() M=M_ + M

11

(8) C=C° + mic'i

9 .
Q.iL<_ Qi S Giu

Only the direct method of solution has been considered in this
study. These algorithms can be used with the modal formulation and
a seperate section references the recent work completed using modal
) analysis.

Equation (1) minimizes the maximm acceleration in the time
domain. The objective function could be displacements instead and the
present algorithms could be used directly. Equation (2) is the

Gham b ol o o g PETTRY T VIRCIYT

eigenvalue problem whose inclusion permits the use of frequencies in
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equation (5) in the analysis. Equation (3) is the structural dynamic ‘_]
equations in matrix form which describe the displacement response X(t). ..
Equation (4) is the so called relative displacement or rattlespace ,.'

constraint. The present algorithms can include this type of constraint
in the analysis. However, no specific numerical examples are presented. A «
using the rattlespace constraint. Equations (6), (7), and (8) show f
the linear changes to the stiffness, mass or viscous damping matrix '
with the design variables a; . The design variables could contain
differing sets in equations (6), (7), (8). Equation (9) lists the
constraint limits on the design variables a..
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3. Frequency Response F

ke

Sometimes, it is convenient to solve vibration problems in the '

driving frequency w domain. This is true for problems which have
experimentally available results for transfer functions. Also, for
stationary random analysi's, the frequency domain transfer function
must be determined. Equation (3) is transformed to the steady
state frequency domain by,

TR TALY

R

(10) X = RE {xoei“"} » P = RE {Poei“’t}

where RE: denotes real part of
i=/T
w: driving frequency
xo: amplitude of harmonic response
PO: amplitude of harmonic loading

For the harmonic substitution, equation (3) becomes,
(11) (-M + iuC + X)X, = P,

The ampl‘itudes xo, Po are complex numbers. Equation (11) may be solved
repeatedly for xo given Po and w using complex arithmetic. It is more

convenient to use the real displacement components in the analysis, The method of
reference (1) is used to work with the real and imaginary components

of xo.

xo = Ufiv

(12) | -w™M + K WC U P

wC uSZM*K v 0

........




The optimization becomes in the frequency domain,
1 MmN oux @ S0 e VD
(14) KY = \MY
(15) | -6M + K oC ul e
uC WM + K vl o

(16) MAX | X, (@) - Xo5 (@< Xy

(17) AL

. A

A< Au

K, + Dok,

(18) X

(19) M

My, v oMy

(20) C Za, C,

(] ii

| ]
(g}
+

F_J

- 21 < <

- (21) aca Sa
-

Equation (13) is the amplitude of steady state acceleration and equation
(15) are the structural dynamic equations to be solved.
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4, Stationary Random

A Frequency Response solution is first analyzed to determine the
transfer function H() which is either the displacement or acceleration
at a response point of interest. The spectral density of the output
is given in terms of the spectral density of the input for a single
input/output system is given in reference (2)3

5,@ = |Hw)]| %s,@)

The same reference also lists techniques for analyzing multiple
input/output systems. The mean square value can be calculated for
any frequency interval,

W

2
2.
L /S (W) w.
[+ ]
|

Various performance measures have been proposed for random analysis

such as using either the spectral density or mean square value. The
optimization problem for stationary random becomes,

(22) MIN (MAX So)

(23) KY = AMY
(24) |wM+ K wC U | R
wC WM+ K v 0

25) s, =|Cufs,

(26 A, €A~ 4
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(27) XK= Ko + ZaiKi

(28) M=M_ + Za.M,
o i1

& v e
X IR XN

(29)

(9]
N
(]
Q
+
&
(2
o
[

[

(30) o

The maximum displacement or acceleration spectral density is the 3
objective function to be minimized in equation (22). Only the single
input/output case is used to calculate the spectral density by equation

. (25), the objective function is converted to a set of equivalent
integral constraints and the minimization is done then on the mean
square response in effect,
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5. Cumulative Constraint and MIN-MAX Problem

The cumulative or equivalent integral constraint has been used in
the optimal control literature (3 ) to convert many discrete points in
the time domain to one equivalent integral. Thus many discrete constraint
equations are lumped into one equation. The cummlative constraint measures
the total amount of constraint violation. If a satisfied constraint is
of the form,

(31) ¥(t) <0 all t.
The brac function measures the amount of constraint violation,

Coe(t), ()20
<p(t)> = {

0, ¢(t)<0O
A constraint totally equivaleat to (31) is,
(32) J<o(t)> dt = 0

Equation (32) is not identically zero if the constraint (31) is
violated. Instead of using (31) at many discrete points in
time, one total constraint (32) is used which measures where the
constraint (31) is violated.

The objective function (1), (13) or (22) can be converted to a
simplier algebraic form.
Consider equation (1),

MIN (MAX [X(t)| )

This minimization is equivalent to minimizing an additional design
variable o such that

10
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MIN o
lx(t) I-— a< 0 for allt

The acceleration constraint that was just introduced can be converted
to a cumulative constraint.

The MIN-MAX part of the optimization becomes,
MIN &
(33) I<|X(t) -a>dt =0

To account for the absolute value of acceleration, the integral
is written

Jidt=0

LTy ve

I=X-a,X>a

I=X-a,~-X>a
I1=20 otherwise

The objective functions (13) or (22) in the frequency domain are
computed in the same manner with frequency replacing time in the integral.
The inner problem or the maximization in this research was done

by function evaluation. This is efficient for the transient problem,

but the frequency response problem requires a decomposition for each
driving frequency in equation (15). It would be required to reduce the
basis of equation (15) by using the real normal modes for efficient
solution in locating the maximum, Reference (1) recommends performing

a one dimensional search on the variable w to locate the maximum, This
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one dimensional search would require several initial starting points to
insure convergence to the maximum of the nonlinear problem in W,

P
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6. Reciprocal Design Variables

For statically determinate structures, stresses and deflections
are proportional to design variables that are linear changes to
stiffness such as areas of rods in truss members, For indeterminate
structures, this is only an approximation. It was investigated in
references (4,5) and found that high quality explicit expressions
for stresses and deflections could be generated using a first order
Taylor series expansion in reciprocal design variables. That is,
the design variable space for stress and static deflection is shallow
in reciprocal design variables, The linearized Taylor series expansions
represent lines that are very good approximations to the exact constraints.

The expansion of a response quantity ¢ is done in the reciprocal design
variables %.,

34 - 3

(34) ¢ ¢o+z§%sg
1

35 . B =

(35) 8 = &

36 3% = -a23

(36) - %33;

The mass, stiffness and damping matrices are linear functions of
{;i the design variables a.. The derivative of a general matrix G in the
- above classification is,

; (37) G = Go + zaici
L

[ (38) B ¢

L oa, i

408 i

& (39) 3G

[:;-}; i

= 13
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The derivative can be calculated by setting the linear property
j equal to one in the element matrix Gi and multiply by the square of

: the design variable. The same subroutine used to calculate element

matrices can be used to form the above derivative,
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7. Analytic Derivatives

The direct solution of the dynamic response equations in the
time domain uses an efficient implicit equation solver such as Newmark
integration. The same technique could be used in the modal formulation
if coupled real mode damping matrix exists. This would be the most
general capability for solution of the dynamic equations. The Newmark
integration equations (6) are listed for one set on integration

parameters,
§ = ;53 as= !‘.
(40) MX, +CX_ + KX _
t, t, t, = Ptz
(41) kk=k+dom + 2 ¢
&) (3]
(42) PP, =P, +M{ﬁ4ﬁ)2 X, + {-Eit fit
2 2 1 1 1
+C [Az—x + X |
thH
(43) KK *X. = PP
t, t,
(44) §t -(K‘az (X -X) -ae X - X
- 2 2 1 1 4,
e e At O At o
(45) X, =X+ X, +=X
t, ty 2 t, Z e,

The displacements at the next time step are calculated by equation
(43). The matrix KK is only factored when the time step At changes.
The acceleration and displacements are recovered by equations (44) and

15.
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(45). The derivatives of the response quantities (7) are found by
differentiating equations (47) THRU (45). This is the pseudo loads
technique, The derivatives with respect to the reciprocal variables

are,
ax 3PP
49—tz - g, o+ —F2
98, %8, 7t, 9B,
(47) KK _ 3K 4 M 2 3C
L A (O R A T T
48), ax X X
( )aPPtz = 8P u L4 4 +§;_.,_t; .t
B, B, 0o, Fos, | s,
. . 7S_z_ ._;.1 . _5.51
% 4 . . . T 98, .
“s b Y Ty By |, Ry 2y ’ )
98; ’ TE't)z B, B | I 8Bi B,
(50) 2%, 3X X ax
R . N . 3
28, 8, 2 8, 2 98

Using this technique, the derivatives of displacement, velocity
and acceleration must be calculated and saved for all degrees of freedon
in the finite element model at two neighboring points in time. The KK
matrix in (46) was decomposed in the response calculations and would not
be factored again in this step,

The pseudo loads technique was applied to the structural equations
(24) in the frequency domain.
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As discussed in reference (8) , frequency constraints are inherently

nonlinear, Reference (9) suggests if the structure has large fixed masses,

direct design variables and a linear Taylor series expansion should be
used., To use frequency constraints in the present research, the inverse

eicenvalue A * should be used,
KY = AMY
A*KY = MY
EUNS §

The justification follows from the Rayleigh quotient:

YMY + ZoyImy
._o i

i
YKY + Zoylky
o i’ i

where the mass and stiffness are given by equations (6), (7) or
(18), (19).

For large fixed masses, Mo dominates the top of the ratio. The
reciprocal eigenvalue contains a, on the bottom. The eigenvectors Y
are functions of the design variables, but enter in the same manner
at the numerator and denominator. A* might be best represented in Bi
space.

The derivative is well known and given in reference (10):

Y,
i

3aj | 2aj 3aj

(52) 3 _ (T Ex . oM

This derivative has to be expressed in terms of the reciprocal
design variables and reciprocal eigenvalue.

A, 8—1 B = !'—
1 x“i j aj
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8. Linearized Constraints

The acceleration cumitlative constraint has the following first {:1
order Taylor series expansion in the reciprocal variables. ]
(54) ’ ri
T1dar =0
o ' .:
- ‘ 3.).( s
where I-= xo ¥ }:—-—aBi asi -B, for X =g
I=-x .. 2% 28 ., for -x 2B
o asi
I=0 For X otherwise

This constraint is numerically integrated by a modified trapezoid
law which finds those response points above a line for which the constraints
are violated. The algorithm interpolates to find the points where the
actual constraint is violated.

The steady state acceleration amplitude in the frequency domain is,

A=w?y ¥, V!
i where X, =U- iy is the amplitude of steady state displacement, -
Ll The first order Taylor series expansion for the acceleration ' )
g amplitude magnitude is, h"
g
. -
g (55)

21 du=o

L : 3
: where I=A + wZ z 3y + 1A
‘ ° yyZ * 2 Cor; * 948, - 6 o
: oy
g .'.5
[ 20 .
N :
: 3
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. The acceleration spectral density of the output can be expressed
in terms of the spectral density of the input and the transfer function
for a single input/output system,

S, W = ot I H(w) leI(w)

Where the transfer function is the displacement at the response point.

To utilize the same approximation as the frequency response
acceleration constraint equation (55),consider the square root spectral
density.

S= A @ =u’ W Wl AW

o

To modify (55) for acceleration spectral densities, the mz is

multiplied by v‘§ w). )

(56) Mrdw = 0
°~
2  ——————
where w 7S, (W
1
I=S§ a.y.+.a__ 8
LTI B; 38)

A formula could be derived for multiple sources with cross correla-
tion in a similar manner. Equation (56) developed with this algorithm
is the square root mean square acceleration that exceeds a specified
value in the frequency domain.
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9, Modal Method

il

The direct method was analyzed in this research, but the developed
algorithms could be used with the modal analysis method with the addition
of the following algorithms,

The structural dynamic equations are first converted to modal
amplitudes as the degrees of freedom.

RESEPR TR L3 -

X = Y2

(57 (Y™MY)Z + (Y'CY)Z + (YKY)Z = Y'P

The generalized mass and stiffness are diagonal, but the modal
damping is in general a coupled matrix as the result of being transform
by the real eigenvectors Y. When derivatives are calculated for equation
(57) it becomes neceséary to differentiate the eigenvector, The research
presented in reference (11) should be used to efficiently calculate the
eigenvector derivative if large changes have been made to the structure.
If only isolator changes are made, usually only small changes are made
to the structure.

In such a case, the eigenvector derivative would not be needed.

A direct modal solution was done for a problem of this type in reference

(12).  In this problem the information could be accurately calculated i
in the Ritz eigenspace of the current design. A direct modal solution }
could also be used with the present research, The algorithms of the

present research should replace the very inefficient one developed in
reference (12),
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10. Sequential Linear Programming

The problem considered in this research of minimizing a linear
design variable subject to constraints on displacements or accelerations
in the time or frequency domain is an almost linear problem in reciprocal
design space. It is only natural to use sequential linear programming
as the optimization algorithm. A primal-dual linear program which is
listed in reference (13) was used as the optimizer. Sequential linear
programming is described in reference (14). Reference (15) has shown
the dynamic response optimization problem to have a disjoint design
space. Sequential linear programming (14) is capable of solving such

a nonconvex problem,
The design variables (9), (21) are converted to the reciprocal space,

(58) 1

-

< B'f“L

[
e
Jube

The actual design variables were the changes 531,

(59) B: = Bi + GBi ’ Bi =

R

where 'B& is the current reciprocal design variable,

The design variable; aei are not restricted in sign, Linear
programming requires the design variables to be non-negative. This
requires the design variable to be converted into the difference of
two non-negative variables.

(60) 8 = @B - &B:

b §

';30, 8 20

The bounds on 631 become,

.23
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(61) 1 - 1 <o -8l 1
%u a. %1, a.
1 1

To maintain linear approximations, the design variable GBi is also
bounded by a move limit Mi which is taken as a percent change from the
current design point,

(62) IGBiI < My

The bounds on the new design variables in equation (61) become,

(63) 0 < 88 <MIN | M, -
iL @
b §

0 < O8] CMIN|M, (-g—+ =)

: 1 iu ai

The remainder of the optimization algorithm is converted by
equation (60) to the GB;, 68; space. For example, the acceleration
constraint (54) in the time domain becomes,

DA

'l

- . e EEE I *
et 2

T i

. J 1 dt=0
: o
: R
g 3x 3x 3
= v + _ Yy . ~—

; where I Xo + I ( _3§} GBi 53?-681) B, B
;. i - Tyl
% for x > 8 S
‘ - 3; + ai - iﬁ

1 -Xo T ( 3@{581 - 53—5681 )- B a2

X > 8 éﬂﬁ

I1=0 for X otherwise ii

g
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The frequency constraint is changed similarly. At the end of each
linear program, the new design variables are recovered by,

- + -

B + GBi - GBi

i i

(64) B
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11, 111 Conditioning -

As mentioned previously, the vibration isolation problem can be
ill conditioned. Isolators are designed to move independently of the
main structure. This would require the properties to be several orders
of magnitude less than the surrounding structure and conditioning
problems would then arise. An approximate way of dealing with this

'.-‘v ' r‘-‘ -‘ ..’- '
Ay 4 l‘J e

situation which was done in reference (12) is to use modal synthesis.
The main structure is modeled by component modes and the isolators

are included at the syntheses time. If the generalized mass, stiffness
and damping are of the same order of magnitude as the isolator proper-
ties, the problem will become well conditioned. However, this method
is approximate and no error estimates are available for it,

by SR

o
L e
4
P
.

Large space structures are very flexible and inherently ill
conditioned, More accurate techniques would have to be used for prob-
lems in this category.

A method for solving ill conditioned eigensystems is presented .
in reference (16), but it may require modifications to be efficient 'i
for structural problems. A method for the solution of ill conditioned 2
stiffness matrices is presented in reference (17) and it might be ;j}
possible to modify it for the generalized eigenvalue problem, . The '3?
numerical integration schemes for stiff equations are presented in
reference (18).
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12. Numerical Applications

Pl IET A RN

Transient Response:

The model of reference (1) shown in figure 1 was subjected to the

“
Y

e

-
"-:'.
2y
I'-oi

4
M
R
.
Td
-
4
.
U

displacement inputs fI(t) and fz(t) shown in figure 2, This model

4
i

represents a vehicle running over a bump. The transient step size
used was .1 sec and 39 time intervals were calculated. The five
springs were used as design variables with limits shown on figure 1.
The objective function was a design variable which represented the
maximum acceleration at point 1 in the model over the 3.9 sec time
of response, The acceleration constraints were made active when

the acceleration bound was 99% of the maximum, Figure 3 presents

the decrease in acceleration at point 1 in the model versus the
required number of structural analyses, By equation (60),each design
variable is converted into two so the total number of design variables
used in the linear program was eleven, Initially, the reciprocal

\ variables were constrained by a move limit to lie within *25% of

; the initial values., Convergence was obtained at iteration three.

E The spring rates found at the optimum were,

! kl = 51,2 1b/in

i k, = 200.1b/in

k

- k3 = 200,1b/in =~
k, = 1600, 1b/in =

k v
kS = 1000. 1b/in -

“The minimum acceleration obtained was 228,8 in/secz. Figure 4
presents the initial response versus the optimal one,

: 27
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An indeterminate beam composed of rods, shear panels, springs

and concentrated masses is shown in figure 5. The two point masses were

subjected to a harmonic force input of

1000 SIN (mt) 0 <t <sec
£(t) = {

0 2 sec <t

Eight design variables were used in the analysis, 3 rod areas
at top and bottom and the two scalar springs. The two vertical rods
inside the shear wall remained unchanged at the initial area of the

assembly, The vertical displacement response of the top two response

points were required to be less than, the 9th design variable. This
problem validated the extension of the method to finite elements and '
multiple response points,

This problem is also staticaily indeterminate and the reciprocal

v"',t.’.'v R

design variables used in the analysis were only an approximation, A :
i lumped mass model was used for the rods and shear panels., The shear ?3
é panel used wes the hybird one derived in reference (19), The damping ;;
fﬁ used was C = ,01 LB-SEC/IN and a scalar viscous damper of this magnitude b
. to ground was applied at every degree of freedom. Figure 6 presents f}
o the decrease in the maximum displacement vs structural iteration, ;f
lj Convergence was achieved at iteration 3 when the maximum displacement ’
=, B
[ went from an initial value of ,0166 IN to .0082 IN at the third iteration, o
> - 5
E' The rods at the optimum all reached the upper bound of 2 IN2 and the if
i 28 -
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scalar springs had the value of 51,200 LB/IN which were near the lower l'J
bound but not exactly equal to it,

Throughout the optimization, the symmetry in the problem was
preserved, This problem could be ill conditioned when the spring rates
were more than a power of ten smaller than the lower limit. Typically :
isolator elements are designed to vibrate independently from the surround-

ing structure. Vibration isolation is inherently ill conditioned for this

reason, and this research has not considered the ill conditioned problem, . i
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Frequency Response: ;J

The model shown in figure 1 was subjected to equal inphase displace-
ment inputs fl(t) = fz(t) = 5 coswt at the tire. This would represent a &4
vehicle on a shaker table, The five springs were used as design variables
with the limits shown of figure 1. The acceleration amplitudes were
evaluated between 5 RAD/SEC and 44 RAD/SEC in steps of 1 RAD/SEC as the

driving frequencies. The objective function was the maximum steady state

acceleration amplitude at point 1 over the range of driving frequencies.
The acceleration constraints were made active when the acceleration was
99% of the maximum, Figure 7 presents the decrease in acceleration
amplitude at point 1 in the model versus the required number of structural

analyses. Initially, the reciprocal variables were constrained by a move

i limit to lie within ! 25% of the initial values. When a step was not
;‘ minimizing, the percent move limit on the reciprocal variables was ?j
ﬁi decreased by 50% and the linear program was resolved at the previous design ;;
i point. Convergence was achieved at iteration 7 which was close to the P?
iz, value found at iteratiom 5. ii
% The spring rates at the optimum were as follows: ig
& ™
bn‘ .~..]
B i3
P kl = 52,9 LB/IN i3
=
L:' = ‘1
W k2 231,2 LB/IN b
g kg = 215.1 LB/IN =
* Y
. k, = 1000.0 LB/IN
- kg = 1311,0 LB/IN .1
b
30
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The minimum acceleration amplitude was found to be 318.7 IN/SECZ.

Figure 8 compares the initial acceleration amplitude in the frequency

domain vs the optimized response,
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3 Stationary Random Response: - 4

The model shown in figure 1 was subjected to a random displacement
at the tire patches as discussed in reference (20) with parameters that
correspond to a smooth highway. A Frequency Response solution is first

we

completed with a unit harmonic displacement e'* at the front tire and

i (ut-8) at the rear tire with

a unit displacement with phase lag e
phase angle ¢ = %-. The spectral density of the output in terms of the

spectral density of the input and transfer function is,
s (@ = |Hw |2 s,
o ) Rl

The transfer function is determined by using the acceleration output

of the frequency response solution due to the unit harmonic input,

The spectral density acceleration was evaluated between 5 RAD/SEC and
44 RAD/SEC in steps of 1 RAD/SEC, The objective function was the design
variable representing the maximum acceleration spectral density.

The acceleration constraint was made active when it was 99% of the

Ty Yy r T Y I

maximum, Figure 9 presents the decrease in the objective function versus

Y §

the required number of structural analyses. The reciprocal spring rates

were constrained by * 25% of the current value as move limits., At the

detection of each infeasibility, the move limit was reduced by 50% of

.

L
[
R—

the current percent.

Convergence was achieved at iteration 3, -

The spring rates at Q‘:e optimum were, .
. 3
| o

.
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3
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The minimm spectral density was 49,61 (IN/SEC?)?/Hz. The initial

and optimized spectral densities are presented in figure 10.
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Transient Response with Frequency Constraints:

Sl

The model shown in figure 1 was again used with the same constraints
and loading condition. An additional constraint was added on the inverse 3

D" B
8

éT frequency: Zﬂ
. n
» .
. 1 sec’ | sec .
y 000 (rad) < * “zm (%3 H
L g

A 10% move limit was imposed initially on the design variables and
%; each time an infeasibility was found, the move limit was decreased by 50%. N
A ]

el
Tas

The minimum acceleration found was 286.9 IN/SEC2 after six structural

analyses. The analysis was done in both the direct eigenvalue and inverse
eigenvalue space with the same convergence properties. Figure 11

presents the decrease in acceleration vs structural analysis in the inverse
eéigenvalue constraint. Near convergence was achieved at four analyses,
but no conclusions concerning the eigenvalue constraint could be inferred

from this problem, N
r
3 B
2 ; 1
R - "
r- ZZ:'
bi "21
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13. ConclUGsions -~

The vibration isolation problem can be efficiently analyzed
expressing the displacement or acceleration constraints as a first order
Taylor series expansion in reciprocal design variables. The cumslative
constraint folds many discrete constraints into a single one.

The method for approximating the displacement or acceleration
constraints is consistent with the current algorithms for weight
minimization.
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e
CsL §*5 (1) 3 L=JC 3
:
H
-
I'-‘IIG = 290 1b. Cl = 10 1b.-sec/in j
MZG = 4,500 1b. Cz = 25 1b.-sec/in l’
I =41,000 1b.-in-sec C3 =25 1b.-sec/in
MLIG = 9.6 1. C’-I = 5 1b.-sec/in
HSG = 9%.6 1b. CS = 5 1b.-sec/in
R LIMIT INITIAL 1GN UPPER LIMITS
=50 1b./in Kl = 100 1b./in |<u:l =500 1b./in
=200 1b./in Ky = 300 1b./in Ky = 1000 1b./in y
Kz =200 1b./in kg = 300 1b./in Kuz = 1000 1b./in
= 1000 1b./in = 1500 1b./in KU, = 2000 1b./in o
Ky "y 4 =
|<L5=1[m 1b./in |<5=150) 1b./in |<us=2m0 1b./in -
FIGURE 1: OPTIMIZATION MODEL
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FIGURE 2:
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.......

TIME LAG FRONT TO REAR t,

t, = L‘/S = ,2667 SEC

FRONT WHEEL DISPLACEMENT
fy (1) = Xg(1 - coswt) O&teat,
f, (1) = Xg(1 + COSW (t-15)) tyetst,

REAR WHEEL DISPLACEMENT

TRANSIENT DISPLACEMENT INPUT FOR FIGURE 1
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100" 100
l v
————— 100’ 100° . 1000 —»
K K

LOWER LIMIT INITIAL AREAS UPPER LIMIT f;
.5 IN? 1 In? 2 IN2 £
4

E = 10x10° ps1 M = ,005 SLUGS i
’ 6 = ux10® psi ";
P = 8.7% 10'3 sLuGs/IN 3 C = .01 LB-SEC/IN 1
g t= 1IN -
3 .l
- LOWER LIMIT INITIAL K UPPER LIMIT ‘
$ 50,000 LB/IN, 100,000 LB/IN, 200,000 LB/IN. -
1 .-..
i' FIGURE 5: RODS, SHEAR PANELS, SPRINGS AND MASSES
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FIGURE 11: TRANSIENT RESPONSE WITH FREQUENCY
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